

বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examinations 2021

(Under CBCS Pattern) Semester - V

Subject: MATHEMATICS

Paper: DSE2T

Full Marks: 60 Time: 3 Hours

Candiates are required to give their answer in their own words as far as practicable.

The figures in the margin indicate full marks.

PROBABILITY AND STATISTICS

Answer any three questions.

 $3 \times 20 = 60$

- 1. (a) Show that Poisson approximation is a limiting case of Binomial law.
- 6

.......99). Find the probability $P(|x-y| \ge 54)$.

1

(c) Let X be a standard normal variate then find the distribution of $Y = \frac{1}{2}X^2$.

- 2. (a) Prove that for any random variable X (discrete or continuous) and for any real number $cE(|X-c|) \ge E(|X-\mu|)$, Provided the expectations exists and μ is the medial of X.
 - (b) Let X be a random variable having Poisson distribution with parameter μ and the conditional distribution of Y given X = i be given by $f_{i,j} = \binom{i}{j} p^i q^j$ for $0 \le j \le i$, $i \ne 0$, p+q=1. Find the marginal distribution of Y.

(c) If
$$f(x, y) = \begin{cases} \frac{6 - x - y}{8}, & 0 < x < 2, 2 < y < 4 \\ 0, & \text{elsewhere} \end{cases}$$
, find $P(X + Y < 3)$.

3. (a) The jdf (joint density function) of X and Y is given by

$$f(x, y) = \begin{cases} k(x+y), & 0 < x < 10 < y < 1 \\ 0, & \text{elsewhere} \end{cases}$$

Find find $P(|X-Y|) \le 1/2$ and $f_X(x)$ and $f_Y(y)$. Are X and Y independent?

7

- (b) Let X and Y be dindependent random variable having the normal density $(0, \sigma)$. Find $P(x^2 + y^2 \le 1)$.
- (c) The joint probability density function of the random variable X and Y is

$$f(x, y) = \begin{cases} k(1-x-y), & x \ge 0, y \ge 0, x+y \le 1\\ 0, & \text{elsewhere} \end{cases}$$

where k is a constant. Find mean value of Y when X = 1/2 and the covariance of X and Y.

- 4. (a) If X and Y are connected by 2X + 3Y + 4 = 0, then show that $\rho(X, Y) = -1$.
 - (b) Let the joint probability density function of X and Y be given by $f(x, y) = x^2 + \frac{xy}{3}$, 0, x, 1, 0, y, 2:0 elsewhere. Find regression line of x on y.

(c) If X and Y are two independent random variable having the density function respectively

$$f_X(x) = \begin{cases} e^{-x}, & x > 0 \\ 0 & \text{elsewhere} \end{cases} \text{ and } f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0 & \text{elsewhere} \end{cases}$$

Find the density function of
$$\frac{X}{X+Y}$$
.

- 5. (a) Show by Chebyshev's inequality that 2000 throws with a coin the probability that the number of heads lies between 900 to 1100 is 19/20.
 - (b) A random variable X has probability density function $12x^2(1-x)$, (0 < x < 1). Compute $P(|x-m| \ge 2\sigma)$, compare it with the limit given by Chebyshev's inequality.
 - (c) A random sample of 500 apples was taken from a large consignment and 60 were bad. Obtain the 98% confidence limits for the percentage number of bad apples in the consignment.
- 6. (a) Sample of two types of electric light bulb were tested for length of life and the following data were obtained:

	Type-I	Type-II
Sample no	$n_1 = 8$	$n_2 = 7$
Sample means	$\overline{x}_1 = 1234 \text{ hrs}$	$\overline{x}_2 = 1036 \text{ hrs}$
Sample s.d	$s_1 = 36 \text{ hrs}$	$s_2 = 40 \text{ hrs}$

Is the difference in the mean sufficient to warren that the Type I is superior to Type II regarding the length of life.

- (b) Obtain the recurrence relation $\mu_{K+1} = \mu \left(K \mu_{K-1} + \frac{d\mu_K}{d\mu} \right)$ for the Poisson distribution with parameter μ . Hence, find the coefficient of Skewness and Coefficient of excess of this Poisson distribution.
- (c) If X is uniformly distribution over (-1,1), then find the distribution of |X|.

BOOLEAN ALGEBRA AND AUTOMATA THEORY

Answer any three questions.

 $3 \times 20 = 60$

- 1. (a) Tabulate the Chomsky hierarchy with an example for each type of grammar.
 - (b) What are universal logic gate? Why those are called universal?
 - (c) With a suitable example, explain various asymptotic notations.
 - (d) Explain lattice, sublattice, explain with example.

5+5+5+5

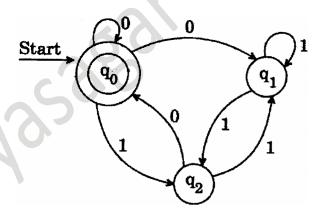
- 2. Construct a Turing Machine that recognizes the language $L = \{0^{nm} : n, m \ge 0\}$.
- 3. Reduce the given CFG with Productions given by

 $S \rightarrow abSB / a / aAb$ and

 $A \rightarrow bS / aAAb$ to Chomsky Normal form.

20

4. Deduce R.E. from the Fig. and check whether the string 0100 is accepted or not.



5. Define a regular set. Using Pumping Lemma, show that the language

$$L = \{a^n b^k : n > k \text{ and } n >= 1\}$$
 is not regular.

10+10

- 6. Among the first 1000 positive integers:
 - (a) Determine the integers which are not divisible by 5, nor by 7 nor by 9.
 - (b) Determine the integers divisible by 5 but not by 7 not by 9.

10+10=20

PORTFOLIO OPTIMIZATION

Answer any three questions.

 $3 \times 20 = 60$

- 1. Prove that the expected return μ_i on any asset i satisfies $\mu_i = r_f + \beta_i \left(\mu_M r_f \right)$, $\beta_i = \frac{\sigma_{iM}}{\sigma_{M^2}}$ and σ_{iM} is the covariance of the return on asset i and the market protfolio r_M ; $\sigma_M^2 = \text{var} \left(r_M \right)$.
- 2. Consider 3 assets with rates of return r_1 , r_2 and r_3 respectively. The covariance matrix and

expected rates of return are
$$\Sigma = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
 and $m = \begin{pmatrix} 0.4 \\ 0.4 \\ 0.8 \end{pmatrix}$

- (a) Find the minimum variance portfolio.
- (b) Find a second efficient portfolio.
- (c) If the risk free rate is $r_f = 0.2$, find an efficient portfolio of risky assets.
- 3. For the Markowitz mean-variance portfolio, solve the quadratic programming problem

Minimize
$$\frac{1}{2}w^T \Sigma w - \lambda m^T w$$

Subject to $e^T w = 1$

where
$$w = (w_1, w_2, \dots, w_n)^T$$
, $m = (m_1, m_2, \dots, m_n)^T$

$$\mu_i = E(r_i), z = (r_1, r_2, \dots, r_n)^T, \text{ cov}(z) = \Sigma$$

- 4. Assume that the expected rate of return on the market portfolio is 24% ($r_M = 0.24$) and the rate of return on T-Bills (risk free rate) is 7% ($r_f = 0.07$). The standard deviation of the market is 33% ($\sigma_M = 0.33$). Assume that the market portfolio is efficient.
 - (a) What is the equation for the capital market line?
 - (b) If an expected return of 38% is desired, what is the standard deviation of this position?

- 5. (a) Define (i) Beta of a portfolio
 - (ii) Security market line
 - (b) You have a protfolio with a beta of 0.84. What will be the new portfolio beta if you keep 85% of your money in the old portfolio and 14% in a stock with a beta of 1.93?
- 6. (a) What are some of the benefits of diversifiction?
 - (b) Use the information in the following to answer the questions below.

State of Economy	Probability of state	Return on A in state	Return on B in state
Boom	35%	0.040	0.210
Normal	50%	0.030	0.080
Recession	15%	0.046	-0.010

- (i) What is the expected return of each asset?
- (ii) What is the variance of each asset?