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PROBABILITY AND STATISTICS

Answer any three questions. 3×20=60

1. (a) Show that Poisson approximation is a limiting case of Binomial law. 6

(b) Two numbers x and y are selected at random from the set of number {1, 2, 3, 4,

........99). Find the probability  54P x y  . 8

(c) Let X be a standard normal variate then find the distribution of 21
2

Y X . 6
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2. (a) Prove that for any random variable X (discrete or continuous) and for any real number

   cE X c E X   , Provided the expectations exists and   is the medial of X.
7

(b) Let X be a random variable having Poisson distribution with parameter   and the

conditional distribution of Y given X i  be given by ,
i j

i j

i
f p q

j
 
  
 

 for 0 j i  ,

0i  , 1p q  . Find the marginal distribution of Y. 6

(c) If  
6 , 0 2, 2 4

, 8
0, elsewhere

x y x y
f x y

      


,  find  3P X Y  . 7

3. (a) The jdf (joint density function) of X and Y is given by

    , 0 10 1
,

0, elsewhere
k x y x y

f x y
     
 


Find  find 1/ 2P X Y   and  Xf x  and  Yf y . Are X and Y independent ?
7

(b) Let X and Y be dindependent random variable having the normal density  0,  . Find

 2 2 1P x y  . 6

(c) The joint probability density function of the random variable X and Y is

   1 , 0, 0, 1
,

0, elsewhere
k x y x y x y

f x y
      
 


,

where k is a constant. Find mean value of Y when 1/ 2X   and the covariance of X
and Y. 7

4. (a) If X and Y are connected by 2 3 4 0X Y   , then show that  , 1X Y   . 6

(b) Let the joint probability density function of X and Y be given by

  2, , 0, ,1, 0, , 2 : 0
3
xyf x y x x y   elsewhere. Find regression line of x on y. 7



(c) If X and Y are two independent random variable having the density function respectively

  , 0
0 elsewhere

x

X
e x

f x
 

 


 and   , 0
0 elsewhere

y

Y
e y

f y
 

 


Find the density function of X
X Y

. 7

5. (a) Show by Chebyshev’s inequality that 2000 throws with a coin the probability that the
number of heads lies between 900 to 1100 is 19/20. 6

(b) A random variable X has probability density function    212 1 , 0 1x x x   .

Compute  2P x m   , compare it with the limit given by Chebyshev’s inequality..
7

(c) A random sample of 500 apples was taken from a large consignment and 60 were bad.
Obtain the 98% confidence limits for the percentage number of bad apples in the
consignment. 7

6. (a) Sample of two types of electric light bulb were tested for length of life and the
following data were obtained:

1 2

1 2

1 2

Type-I Type-II
Sample  no 8 7
Sample  means 1234 hrs 1036 hrs
Sample  s.d 36 hrs 40 hrs

n n
x x
s s

 
 
 

Is the difference in the mean sufficient to warren that the Type I is superior to Type II
regarding the length of life.

(b) Obtain the recurrence relation 1 1
K

K K
dK
d 

 
      

 for the Poisson distribution

with parameter  . Hence, find the coefficient of Skewness and Coefficient of excess of
this Poisson distribution. 7

(c) If X is uniformly distribution over  1,1 , then find the distribution of X . 6

_____________



BOOLEAN ALGEBRA AND AUTOMATA THEORY

Answer any three questions. 3×20=60

1. (a) Tabulate the Chomsky hierarchy with an example for each type of grammar.

(b) What are universal logic gate ? Why those are called universal ?

(c) With a suitable example, explain various asymptotic notations.

(d) Explain lattice, sublattice, explain with example. 5+5+5+5

2. Construct a Turing Machine that recognizes the language  0 : , 0nmL n m  . 20

3. Reduce the given CFG with Productions given by

S   abSB / a / aAb and

A   bS / aAAb to Chomsky Normal form. 20

4. Deduce R.E. from the Fig. and check whether the string 0100 is accepted or not. 20

5. Define a regular set. Using Pumping Lemma, show that the language

 : and 1n kL a b n k n    is not regular.. 10+10

6. Among the first 1000 positive integers :

(a) Determine the integers which are not divisible by 5, nor by 7 nor by 9.

(b) Determine the integers divisible by 5 but not by 7 not by 9. 10+10=20

_____________



PORTFOLIO OPTIMIZATION

Answer any three questions. 3×20=60

1. Prove that the expected return i  on any asset i satisfies  i f i M fr r     ,
2

iM
i

M


 


and iM  is the covariance of the return on asset i and the market protfolio Mr ;

 2 varM Mr  .

2. Consider 3 assets with rates of return 1 2 3, andr r r  respectively. The covariance matrix and

expected rates of return are
2 1 0
1 2 1
0 1 2

 
    
 
 

 and
0.4
0.4
0.8

m
 
   
 
 

(a) Find the minimum variance portfolio.

(b) Find a second efficient portfolio.

(c) If the risk free rate is 0.2fr  , find an efficient portfolio of risky assets.

3. For the Markowitz mean-variance portfolio, solve the quadratic programming problem

Minimize 1
2

T Tw w m w 

Subject to 1Te w 

where    1 2 1 2, , ... ... , , , ... ...T T
n nw w w w m m m m 

     1 2, , , ... ... , covT
i i nE r z r r r z    

4. Assume that the expected rate of return on the market portfolio is 24%  0.24Mr   and

the rate of return on T-Bills (risk free rate) is 7%  0.07fr  . The standard deviation of

the market is 33%  0.33M  . Assume that the market portfolio is efficient.

(a) What is the equation for the capital market line ?

(b) If an expected return of 38% is desired, what is the standard deviation of this position?



5. (a) Define (i) Beta of a portfolio

(ii) Security market line

(b) You have a protfolio with a beta of 0.84. What will be the new portfolio beta if you
keep 85% of your money in the old portfolio and 14% in a stock with a beta of
1.93 ?

6. (a) What are some of the benefits of diversifiction ?

(b) Use the information in the following to answer the questions below.

State of Economy Probability of state Return on A in state Return on B in state
Boom 35% 0.040 0.210
Normal 50% 0.030 0.080
Recession 15% 0.046 0.010

(i) What is the expected return of each asset ?

(ii) What is the variance of each asset ?

_____________


